
REINFORCEMENT LEARNING

Vivek Borkar

IIT BOMBAY

June 13, 2024, LAAS, Toulouse

Learning paradigms:

1. Supervised learning: based on precise feedback on per-

formance (e.g., gradient information in neural network

training, think of a ‘teacher’)

2. Unsupervised learning: no feedback, ‘self-organization’

driven by data (e.g., clustering, think of learning to skip

rope)

3. Reinforcement learning:based on ‘evaluative’ feedback

(e.g., reward or cost, think of parents or spouse)

Long history, since late 1800’s (Thorndike, models of ani-

mal behavior), later psychology in early-mid 20th century

(Bush and Mosteller)

Enormous amount on related ‘direct adaptive control’ by

Tsypkin school in Russia, K. S. Narendra (US) and M.

A. L. Thathachar (India)

Resurrected in late 20th century because of computa-

tional accessibility and emerging applications in robotics

etc.

Loosely speaking: RL = iterative schemes for MDPs +

stochastic approximation to make it ‘data driven’ (re-

places conditional average/average by incremental iter-

ates for averaging)

Straddles between MCMC and numerical schemes for

‘policy evaluation’: lower variance at cost of per stage

computation.

Q-learning

Consider the discounted value function

V (i) = minE

 ∞∑
m=0

αmk(Xm, Zm)

where the minimum is over all admissible controls. It

satisfies the dynamic programming equation

V (i) = min
u

[k(i, u) + α
∑
j
p(j|i, u)V (j)] ∀i. (1)

This is an equation of the form V = F (V) for a suitably

defined F (·) : R|S| 7→ R|S|.

F (·) is nonlinear and involves a conditional expectation

with respect to p(·|i, u) inside the nonlinear operator

‘minu(·)’.

If we want a data-driven algorithm to solve it using stochas-

tic approximation that leverages the averaging property

of stochastic approximation, this presents a problem.

For example, we have the value iteration algorithm Vn+1 =

F (Vn), i.e.,

Vn+1(i) = min
u

(k(i, u) + α
∑
j
p(j|i, u)Vn(j)) ∀i.

To replace the right hand side with an incremental scheme

based on stochastic approximation to do the averaging

runs into trouble because of the minimization outside the

averaging operation : average of a minimum is not the

same as minimum of the average.

One way out is to consider the so called Q-values defined

by

Q(i, u) = k(i, u) + α
∑
j
p(j|i, u)V (j).

This is nothing but the object being minimized on the

right hand side of (1). Then V (i) = minaQ(i, a) and

therefore

Q(i, u) = k(i, u) + α
∑
j
p(j|i, u)min

a
Q(j, a). (2)

This is similar to (1) and again is of the form Q = G(Q)

for a suitably defined G(·). Now the ‘min’ is inside the

(conditional) averaging.

To be precise, for x := [x(i, u)] ∈ R|S|×|U |, G(x) = [Giu]

is defined by:

Giu(x) = k(i, u) + α
∑
j
p(j|i, u)min

a
x(j, a) ∀i, u,

so that (2) can be written as a fixed point equation

Q = G(Q).

In fact, the ‘Q-value iteration’ Qn+1 = G(Qn), i.e.,

Qn+1(i, u) = k(i, u) + α
∑
j
p(j|i, u)min

a
Qn(j, a), ∀i, u (3)

will converge to the desired Q. This can be proved ex-

actly as for value iteration.

Note also that a minimizer of Q(i, ·) yields an optimal

choice of control in state i without requiring the knowl-

edge of p(·|·, ·).

But we have increased the dimensionality of the iterates

from |S| to |S| × |U |. However, the minimization is now

inside the conditional average. Thus using the ‘stochas-

tic approximation for finding fixed points of functions’,

one can propose a stochastic approximation scheme as

follows.

Let a(n) > 0 be a stepsize sequence satisfying
∑
n a(n) =

∞,
∑
n a(n)2 < ∞.

The (i, u)th component of the iteration then is

Qn+1(i, u)

= (1− a(n))Qn(i, u) + a(n)(k(i, u) +

αmin
a

Qn(ξiu(n+1), a))

= Qn(i, u) + a(n)(k(i, u) + αmin
a

Qn(ξn+1(i, u), a)

− Qn(i, u)), (4)

where {ξn(i, u)} are independent S-valued random vari-

ables such that

P (ξn+1(i, u) = j) = p(j|i, u) ∀ i, u, n.

In words, we have replaced the conditional average with

respect to p(·|i, u) by an evauation at a simulated ran-

dom variable generated according to p(·|i, u) and then re-

placed the resulting candidate update by a convex combi-

nation of it with the previous iterate Qn(i, u) with weights

a(n),1− a(n) respectively.

The above iteration can be written as

Qn+1 = Qn + a(n)(G(Qn)−Qn +Mn+1),

where Mn+1 = [Mn+1(i, u)] defined by

Mn+1(i, u) := α(min
a

Qn(ξn+1(i, u), a)−
∑
j
p(j|i, u)min

a
Qn(j, a))

is a martingale difference sequence.

Thus it is a stochastic approximation algorithm whose

o.d.e. limit is

q̇(t) = G(q(t))− q(t). (5)

We next prove that G : R|S|×|U | 7→ R|S|×|U | is a contrac-

tion with respect to the ‘max norm’ ∥x∥∞ := maxi,u|x(i, u)|.
We have, for x, y ∈ R|S|×|U |,

|Giu(x)−Giu(y)| = |k(i, u) + α
∑
j
p(j|i, u)min

a
x(j, a)−

k(i, u)− α
∑
j
p(j|i, u)min

a
y(j, a)|

= α|
∑
j
p(j|i, u)(min

a
x(j, a)−min

a
y(j, a))|

≤ α
∑
j
p(j|i, u)|min

a
x(j, a)−min

a
y(j, a))|

≤ α
∑
j
p(j|i, u)max

k
|min

a
x(k, a)−min

a
y(k, a))|

= αmax
k

|min
a

x(k, a)−min
a

y(k, a))|

≤ αmax
k

max
a

|x(k, a)− y(k, a))|

(Check this)

= α∥x− y∥∞.

Taking maximum over i, u on the left hand side, we get

∥G(x)−G(y)∥∞ ≤ α∥x− y∥∞,

i.e., G is a contraction with respect to the norm ∥ · ∥∞.

By the Banach contraction mapping theorem, G has a

unque fixed point Q, i.e., a unique Q satisfying Q =

G(Q). But this is precisely the Q-value we are looking for.

From the theory of stochastic approximation algorithms

for fixed point computation done in class, we have q(t) →

Q for q(·) satisfying (5) and therefore Qn → Q a.s. This,

of course, requires that we first check that

sup
n

∥Qn∥ < ∞.

This is easy because the each iterate is a convex com-

bination of the previous one with a uniformly bounded

quantity.

{ξn(i, u)} can be generated by a simulator or sampled

from accumulated data. Thus suppose we have a large

data base of actual observed transitions (i, u, j), i, j ∈
S, u ∈ U . If we sample one with first two values = the

prescribed i and u, then the third value will be j with

probability ≈ p(j|i, u).

In practice,we usually have a single run {(Xn, Zn)} of a

controlled Markov chain with state process {Xn} and con-

trol process {Zn}. Thus at each time n, you observe a

single pair (Xn, Zn) and therefore learn only about the

(Xn, Zn)th component of Qn. That is, you can update

only one component at a time.

Thus the algorithm becomes

Qn+1(i, u) = Qn(i, u) + a(n)I{Xn = i, Zn = u}(k(i, u) +

αmin
a

Qn(Xn+1, a)−Qn(i, u)), (6)

where I{Xn = i, Zn = u} = 1 if Xn = i and Zn = u, and

0 otherwise. This is the Q-learning algorithm of Watkins.

Note that (6) is simply the asynchronous version of (4)

and from the analysis done in class, will have the o.d.e.

limit

q̇(t) = Λ(t)(G(q(t))− q(t)).

Here Λ(t) is a diagonal matrix with nonnegative entries

on its diagonal, which are strictly positive if we have

lim inf
n↑∞

∑n
m=0 I{Xm = i, Zm = u}

n
> 0 (7)

with probability one for all i, u. This means that there

has to be enough ‘exploration’ of all state-control pairs.

In the ‘off-policy’ case, i.e., when we are running a sim-

ulator or using past data to train the algorithm, we can

ensure this relatively easily, because the choice of {Zn} is

flexible. But in on-policy mode, i.e., when a real system

is being controlled while learning, this is not automatic.

The natural choice for sake of getting closer to optimum

would be to use Zn = Z∗
n := the minimizer of Qn(Xn, ·),

that being the current guess for the optimal choice. But

this does not ensure (7). Hence one often takes Zn =

Z∗
n with probability 1 − ϵ and a random (say, uniformly

distributed) u ∈ U with probability ϵ for some ϵ > 0.

SARSA is one such algorithm.

Schemes which slowly decrease this ϵ to zero have also

been proposed. How to explore best remains an active

research area.

This level of simplicity, however, is not always available,

e.g., in training autonomous vehicles, where some actions

may be disastrous and cannot be tried even once. The

emerging area of ‘safe’ reinforcement learning tries to

address this issue.

The above is what one might call ‘vanilla’ Q-learning. I

have ignored a major issue in Q-learning, viz., the curse

of dimensionality. For many practical problems, |S| is too

large and |S|× |U | is even worse. The common fix people

use is function approximation, i.e., to approximate Q(i, u)

by a parametrized function family.

Let this family of functions be fβ(i, u) where β ∈ Rd

with only moderately large d, and then write a learning

algorithm that tries to find the optimal β.

Some popular schemes are linear function approximation,

i.e., linear combination of prescribed basis functions with

the weights constituting the β vector, neural networks

including the ‘deep’ ones, etc. These tweaks are usu-

ally not provably correct, in fact counterexamples exist.

Nevertheless, they often work well, as the success of Q-

learning in game playing programs shows.

Post-decision state formalism

We described how the presence of a nonlinearity outside

a conditional average makes it difficult to come up with

a stochastic approximation version of value iteration and

one has to resort to Q-values to work around the prob-

lem, thereby blowing up the dimension of the iterates.

There are, however, some special situations where one

can work with states alone instead of state-control pairs,

thereby retaining the original dimension of value itera-

tion.

This is the so called post-decision state formalism. In

many situations, the action of control and noise can be

separated in the sense that the Markov chain dynamics

can be explicitly written as

Xn+1 = f(g(Xn, Zn), ζn+1),

where f, g are known maps and {ζn} are i.i.d. with a

known distribution.

An example is a discrete queue with i.i.d. arrivals {ζn}
and controlled departures {Zn} so that the dynamics is

Xn+1 = Xn − Zn + ζn+1.

Here Zn ≤ Xn because the queue length puts a natural

upper bound on the number of departures. It is more

convenient to leave Zn unconstrained and replace the

above by

Xn+1 = Xn −Xn ∧ Zn + ζn+1.

This fits the above framework with g(x, z) = x−x∧z and

f(y, k) = y + k.

For simplicity, we shall take ζn to be non-negative integer

valued with

P (ζn = k) = µ(k), k ≥ 0,

so that µ(k) ≥ 0 ∀k and
∑
k µ(k) = 1. Then Yn =

g(Xn, Zn) is called the post-state and satisfies

Yn+1 = g(f(Yn, ζn+1), Zn+1).

Equivalently, we have the coupled updates

Yn = g(Xn, Zn), Xn+1 = f(Yn, ζn+1).

It is easy to see that {Yn} as well as the alternating

sequence

X0, Y0, X1, Y1, · · · , Xn, Yn, · · ·

are controlled Markov chains in their own right. We call

them the Y -chain and the XY -chain resp., and call {Xn}

the X-chain.

We begin with the XY -chain and instead of using a single

notation V (·) for the value function, we use V (·) for the

value function when the argument is from the X-chain

and W (·) when the argument is from the Y -chain. Then

the dynamic programming principle yields

W (y) =
∑
k
µ(k)V (f(y, , k)),

V (x) = min
u

(k(x, u) + αW (g(x, u)).

Combining both, we get the dynamic programming equa-

tion for the Y -chain as:

W (y) =
∑
k
µ(k)

[
min
u

(k(f(y, k), u) + αW (g(f(y, k), u)))
]
.

(8)

Note that the expectation is now with respect to µ and

it is outside the minimization. Thus we can write the

stochastic approximation version as

Wn+1(i) = Wn(i) + a(n)I{Yn = i}(min
u

k(f(i, ζn+1), u)

+ αW (g(f(i, ζn+1), u))−Wn(i)).

The dimension is now only |S|. This is possible when the

explicit model is known and is simulated off-line, because

we can then generate {Yn} as easily as {Xn}.

In on-line scenario, this will require that Yn, ζn can be

tapped. For example, for the queuing example, we shall

need the arrivals and departures observed, not just the

queue length.

Actor-critic algorithms

Actor-critic algorithms follow a philosophy similar to the

policy iteration.

Given the current guess vn(·) for the optimal stationary

policy, first solve a linear system for the fixed policy vn(·)

(policy evaluation step). This is amenable to a stochastic

approximation based policy evaluation scheme.

Then update this guess to vn+1(·) by a suitable stochas-

tic approximation scheme for minimization.

For a fixed stationary policy v(·), the policy evaluation

can be done by solving the linear equation

V (i) = k(i, v(i)) + α
∑
j
p(j|i, v(i))V (j), i ∈ S, (9)

solvable by the linear value iteration

Vn+1(i) = k(i, v(i)) + α
∑
j
p(j|i, v(i))Vn(j), i ∈ S.

The stochastic approximation version of this is

Vn+1(i) = Vn(i) + a(n)I{Xn = i}(k(i, v(i)) +

αVn(Xn+1)− Vn(i)). (10)

But we need to do this for v(·) = vn(·), which itself is

changing with time. Hence in order to get the same

effect as the above iteration with v(·) replaced by vn(·),

we invoke two time scale stochastic approximation.

That is, we change vn(·) on a slower time scale so as to

perform the minimization operation implicit in the sec-

ond component of a policy iteration step. Then vn(·) is

‘quasi-static’ for the above iteration, i.e., can be treated

as ≈ constant for purposes of analysis.

This, however, calls for a further tweak. A station-

ary policy is a map S 7→ U where both S,U are dis-

crete. It is much more convenient to write stochastic

minimization schemes for continuous variables. So we

consider randomized stationary policies instead, which

subsume stationary policies. Such a policy is a map

ϕ : i ∈ S 7→ ϕ(i, ·) ∈ U := the simplex of probability

vectors on U , defined as

U := {ν ∈ R|U | : ν(a) ≥ 0 ∀ a ∈ U,
∑
a∈U

ν(a) = 1},

with the interpretation: ϕ(i, a) := the probability of choos-

ing control a in state i.

Then the corresponding counterpart of (9) is

Vϕ(i) =
∑
a
ϕ(i, u)k(i, u)+α

∑
j

∑
a
ϕ(i, u)p(j|i, u)Vϕ(j), i ∈ S.

(11)

We update this randomized stationary policy through it-

erates ϕn(·, u), n ≥ 0, on a slower time scale. That is,

P (Zn = u|Xm,m ≤ n;Zm,m < n) =

P (Zn = u|Xn) = ϕn(Xn, u). (12)

We replace (10) by its variant

Vn+1(i) = Vn(i) + a(ν(i, n))I{Xn = i}(k(i, Zn) +

αVn(Xn+1)− Vn(i)). (13)

Here Zn satisfying (12) and ν(i, n) :=
∑n
m=0 I{Xm = i}.

The stepsize schedule {a(n)} satisfies the Robbins-Monro

conditions as usual. There are several alternatives for

updating ϕn. We shall consider a simple parametric one

wherein we take ϕn to be of the form

ϕn(i, u) =
eβn(i,u)∑
b e

βn(i,b)
,

where {βn(i, u)} are parameters we update on a slower

time scale. We restrict β(i, u) to an interval [−β0, β0]

for a prescribed β0 >> 0 for all i, u. This ensures that

ϕn(i, u) ≥ ϵ > 0 ∀ i, u, for some small ϵ > 0. This in turn

ensures sufficient exploration.

Let {b(n)} be another stepsize sequence satisfying the

Robbins-Monro conditions such that b(n) = o(a(n)).

Consider the following iteration for each fixed i ∈ S and

all a ∈ U :

βn+1(i, u) = Γ(βn(i, u) + b(ν′(i, u, n))I{Xn = i, Zn = u} ×

[Vn(i)− k(i, u)− αVn(Xn+1)]), (14)

for ν′(i, u, n) :=
∑n
m=0 I{Xm = i, Zm = u}, with Γ(·) :=

the projection to [−β0, β0].

Before we proceed with the analysis of this scheme, we

need to establish some intermediary results. Define

Kiu(ϕ) := k(i, u) + α
∑
j
p(j|i, u)Vϕ(j)− Vϕ(i), i ∈ S, u ∈ U.

Also define the linear operator

Tϕ(·) = [Tϕ
1 (·), · · · , T

ϕ
s (·)]T : 7→ Rs by:

T
ϕ
i (x) :=

∑
u
ϕ(i, u)(k(i, u) + α

∑
j
p(j|i, u)xj), i ∈ S, u ∈ U.

Finally, define

Giu(ϕ) := −ϕ(i, u)(Kiu(ϕ)−
∑
b
ϕ(i, b)Kib(ϕ)), i ∈ S, u ∈ U.

Observe that
∑
aGiu(ϕ) = 0 ∀i.

Therefore, because ϕ(i, ·) is bounded away from the bound-

ary of U, ϕ(i, ·)+ δGi,·(ϕ) remains a probability vector for

δ > 0 sufficiently small. Denote the corresponding ran-

domized stationary policy as ϕ+ δG. Then

T
ϕ+δG
i (Vϕ)− Vϕ(i) = T

ϕ
i (Vϕ) + δ

∑
u
ϕ(i, u)(k(i, u) +

α
∑
j
p(j|i, u)Vϕ(j)− Vϕ(i))

= δ
∑
u
(Kiu(ϕ) + Vϕ(i))Giu(ϕ)

= δ
∑
a
Kiu(ϕ)Giu(ϕ)

= −(
∑
u
ϕ(i, u)Kiu(ϕ)

2 −

(
∑
u
ϕ(i, u)Kiu(ϕ))

2) ≤ 0

=⇒ T
ϕ+δG
i (Vϕ)− Vϕ(i) ≤ 0. (15)

This implies in particular that

Tϕ+δG(Vϕ) ≤ Vϕ = Tϕ(Vϕ).

Replacing Vϕ by Tϕ+δG(Vϕ), we similarly get

(Tϕ+δG)2(Vϕ) ≤ Tϕ+δG(Vϕ).

Iterating this, we get

(Tϕ+δG)n+1(Vϕ) ≤ (Tϕ+δG)n(Vϕ) ≤ · · · ≤ Tϕ(Vϕ).

Letting n ↑ ∞, the convergence argument for value iter-

ation yields

lim
n↑∞

(Tϕ+δG)n(Vϕ) = Vϕ+δG ≤ Tϕ+δG(Vϕ). (16)

This leads to the key estimate:

Lemma The directional derivative of Vϕ in the direction

G is given by

DGVϕ(i) := lim
δ↓0

Vϕ+δG(i)− Vϕ(i)

δ
≤

∑
u
Kiu(ϕ)Giu(ϕ) ≤ 0.

Returning to the analysis of the algorithm, we ignore for

the time being the additional technicalities caused by the

projection operator Γ(·).

Using the two time scale logic, we then have

Vn(i)− Vϕn(i) → 0 ∀i (17)

In turn, the limiting o.d.e. for (14) becomes

β̇t(i, u) = −Kiu(ϕt) = Vϕt(i)− k(i, u)− α
∑
b
p(j|i, u)Vϕt(j)

(18)

where

ϕt(i, u) :=
eβt(i,u)∑
b e

βt(i,b)
.

Then ϕt(i, ·) satisfies

ϕ̇t(i, u) =
eβt(i,u)β̇t(i, u)∑

b e
βt(i,b)

−
eβt(i,u)

∑
b β̇t(i, b)e

βt(i,b)

(
∑
b e

βt(i,b))2

= ϕt(i, u)(−Kiu(ϕt)−
∑
b
ϕt(j, b)(−Kib(ϕt))

= Giu(ϕt). (19)

This is recognized as a special case of the replicator dy-

namics. (In fact, because it remains in the probability

simplex, the effect of Γ(·) becomes irrelevant in the o.d.e.

limit, i.e., the o.d.e. limits for the projected and unpro-

jected algorithms turn out to be identical.) Consider the

Liapunov function

ϕ 7→ Φ(ϕ) :=
∑
i
Vϕ(i).

Then, letting DGVϕ :=
[
DGVϕ(1), · · · , DGVϕ(s)

]T
, we have

Φ̇(ϕt) =
∑
i
⟨DGVϕt, G(ϕt)⟩

≤ −
∑
i,a

Kia(ϕt)Gia(ϕt) ≤ 0.

Since the sum on the right equals

∑
i

(∑
u
ϕt(i, u)Kiu(ϕt)

2 − (
∑
u
ϕt(i, u)Kiu(ϕt))

2
)
,

it is zero only when ϕt(i, ·) is concentrated on u for which

Kiu(ϕ) takes identical values.

On the other hand, from (19), it is clear that only the op-

timal stationary strategies will be stable equilibria. Oth-

erwise a suitable small perturbation can move the tra-

jectory away from the equilibrium (check this). Invoking

‘with probability 1 avoidance of unstable equilibria due

to noise’, we conclude that the algorithm will lead to

optimal stationary policies with probability 1.

This is where our ignoring Γ(·) will make a difference.

Note that ϕ(i, ·) corresponding to stationary strategies

are on the boundary of U.

But we have excluded the boundary of U by using Γ(·).

What one can conclude with some additional work is

that the scheme will converge to the set of nearly opti-

mal randomized stationary policies which are in proximity

of some optimal stationary policies.

In conclusion, recall the following:

1. Other minimization schemes in place of (14) are

possible.

2. Since (13) is ‘nearly linear’ (because vn(·) changes

slowly and can be treated as approximately static),

one legitimately can use linear function approximation

schemes such as TD(λ). See, e.g., Konda, V. R. and

Tsitsiklis, J. N. (2003) “On actor-critic algorithms”,

SIAM Journal on Control and Optimization, 42(4),

1143-1166.

TD(0)

Next we study the algorithm TD(0), a special (and the

simplest) case of a parametric family of algorithms known

as TD(λ), parametrized by a parameter λ ∈ [0,1].

This algorithm is for policy evaluation, i.e., for learn-

ing the performance of a fixed policy, not for optimizing

performance over policies. Thus we fix a stationary pol-

icy a priori, rendering {Xn} a time-homogeneous Markov

chain. Given this fact, we suppress the control altogether

in our notation and work with an uncontrolled Markov

chain {Xn} with transition probabilities p(·|·).

Assume that this chain is irreducible with the unique sta-

tionary distribution π = [π(1), · · · , π(s)], s = |S|.

Let D := the s × s diagonal matrix whose ith diagonal

entry is π(i). The ‘DP’ equation is

V (i) = k(i) + α
∑
j
p(j|i)V (j), i ∈ S,

written as a vector equation

V = k + αPV

for k = [k(1), · · · , k(s)]T and P = [[p(j|i)]]i,j∈S ∈ Rs×s.

The idea is to approximate V by a linear combination of

prescribed linearly independent basis functions

ϕi : S 7→ R,1 ≤ i ≤ M, with s >> M ≥ 1. Thus V (i) ≈∑M
m=1 rmϕm(i), i.e., V ≈ Φr where r = [r1, · · · , rM]T and

Φ is an s×M matrix whose ith column is ϕi. Since {ϕi}

are linearly independent, Φ is full rank.

Plugging this approximation into the dynamic program-

ming equation above leads to

Φr ≈ k + αPΦr. (20)

But there is no reason why the RHS ⊂ Range(Φ). This

suggests the fixed point equation

Φr = Π(k + αPΦr) := F (Φr), (21)

where Π denotes the projection to Range(Φ) with respect

to a suitable norm, and F (x) := Π(k+αPx). It turns out

to be convenient to use projection with respect to the

weighted norm

∥x∥D := (
∑
i
π(i)|xi|2)1/2.

Then it can be verified that (check this)

Πx := Φ(argminy∥x−Φy∥2D) = Φ(ΦTDΦ)−1ΦTDx. (22)

The invertibility of ΦTDΦ is guaranteed by the fact that

Φ is full rank.

Note also that

∥Px∥2D =
∑
i
π(i)(

∑
j
p(j|i)xj)2

≤
∑
i
π(i)

∑
j
p(j|i)x2j

(by Jensen’s inequality)

=
∑
j
π(j)x2j = ∥x∥2D.

By this and the fact ∥Πx∥D ≤ ∥x∥D (because Π is a

∥ · ∥D-projection), it follows that

∥F (x)− F (x′)∥D = ∥Π(k + αPx)−Π(k + αPx′)∥D
≤ ∥k + αPx− k − αPx′∥D
= α∥P (x− x′)∥D
≤ α∥x− x′∥D,

so F is a ∥·∥D-contraction and has a unique fixed point x∗.

Since x∗ ∈ Range(Φ), there exists r∗ such that x∗ = Φr∗.

This r∗ is unique because the {ϕi} are linearly indepen-

dent. That is, r∗ is the unique solution to (21).

We now derive an iterative scheme for updating {rn},

the successive guesses for r∗. Let φ(i)T ∈ RM for i ∈ S

denote the ith row of Φ. Define the temporal difference

at time n as

dn := k(Xn) + αφ(Xn+1)
T rn − φ(Xn)

T rn.

Note that its conditional expectation given Xn = (say)

i is precisely the discrepancy between the right and left

hand sides of the ith approximate equation in (20).

Let {a(n)} be stepsizes satisfying the Robbins-Monro

conditions.

The TD(0) algorithm is

rn+1 = rn − a(n)φ(Xn)dn

= rn − a(n)φ(Xn)(k(Xn) +

αφ(Xn+1)
T rn − φ(Xn)

T rn). (23)

If we freeze rn = r, the stationary expectation of the ith

component of the correction term on the right (i.e., the

expression multiplying a(n)) turns out to be

g(r) :=
∑
i
π(i)φ(i)(k(i) + α

∑
j
p(j|i)φ(j)r − φ(i)r).

The map g(·) = [g1(·), · · · , gM(·)]T : RM 7→ RM can be

written as

g(r) = ΦTD(k + αPΦr −Φr). (24)

To motivate this, note that it is of the form g(r) =

−∇rΨ(r, r′)|r′=r, where

Ψ(r, r′) :=
1

2
∥Φr − (k + αPΦr′)∥2D

and ∇r is the gradient with respect to the first argument

r.

Compare this with (21)-(22). Thus TD(0) is ‘almost’ a

gradient descent for Ψ(r, r∗), which is what we aim to

minimize, but with the unknown r∗ replaced by its current

guess rn at time n.

Using our analysis of ‘stochastic approximation with Markov

noise’, the limiting o.d.e. can be written as

ṙ(t) = g(r(t)). (25)

Let ⟨x, y⟩D := xTDy for x, y ∈ Rs. Consider the Liapunov

function V (x) := 1
2∥r − r∗∥2.

Then

d

dt
V (r(t)) = ⟨r(t)− r∗, g(r(t))⟩

= ⟨r(t)− r∗,ΦTD(k + αPΦr(t)−Φr(t))⟩

(from the deginition of g(·))

= ⟨Φ(r(t)− r∗), D(k + αPΦr(t)−Φr(t))⟩

(by transposition)

= ⟨Φ(r(t)− r∗), (k + αPΦr(t)−Φr(t))⟩D
(By the definition of ⟨·, ·⟩D)

= ⟨ΠΦ(r(t)− r∗), (k + αPΦr(t)−Φr(t))⟩D
(because x ∈ Range(Φ) =⇒ Πx = x)

= ⟨Φ(r(t)− r∗),Π(k + αPΦr(t)−Φr(t))⟩D
(because ⟨Πx, y⟩D = ⟨x,Πy⟩D)

= ⟨Φ(r(t)− r∗),Π(k + αPΦr(t))−Φr(t)⟩D
(because x ∈ Range(Φ) =⇒ Πx = x)

= ⟨Φ(r(t)− r∗),Π(k + αPΦr(t))−Φr(t)

− (Π(k + αPΦr∗)−Φr∗)⟩D
(because Π(k + αPΦr∗) = F (Φr∗) = Φr∗)

= ⟨Φ(r(t)− r∗), F (Φ(r(t)− r∗))⟩D
−∥Φ(r(t)− r∗)∥2D
(rearranging terms)

≤ ∥Φ(r(t)− r∗)∥D∥F (Φ(r(t)− r∗))∥D
−∥Φ(r(t)− r∗)∥2D

= −(1− α)∥Φ(r(t)− r∗)∥2D
(because ∥F (x)− F (y)∥D ≤ α∥x− y∥D)

≤ 0,

with equality if and only if r(t) ≡ r∗. This proves that

r∗ is the unique globally asymptotically stable equilibrium

for (25) and therefore rn → r∗ with probability 1.

In order to justify the above we need to first establish the

stability of iterates, i.e., supn∥rn∥ < ∞ with probability 1.

Again, the stability test covered in class applies: Define

g∞(r) := limc↑∞
g(cr)

c , which turns out to be the same as

g(r) with the term k replaced by the zero vector. The

o.d.e. ṙ(t) = g∞(r(t)) is then seen to have the origin as

the unique asymptotically stable equilibrium, from which

the above claim follows by the aforementioned test.

The more general scheme TD(λ) has an additional pa-

rameter λ ∈ [0,1] and the update rule

rn+1 = rn + a(n)zndn,

where the ‘eligibility vectors’ zn :=
∑n
m=0(αλ)

n−mφ(Xm)

are given recursively by

zn+1 = αλzn + φ(Xn), n ≥ 0.

The analysis is messier for λ ̸= 0. The intuition is that

the eligibility vectors also give weight to past observa-

tions. This give an extra parameter λ to play with.

TD(λ), λ > 0, are computationally more intensive for

λ > 0.

Certain strengths of TD(λ) are worth note:

1. Since we update only the weights {rn} and the state

appears only as the argument of the ‘features’ φ(·), it

generalizes easily to general state spaces, except that

the math gets slightly more abstract (e.g., summation

with weights π(·) will get replaced by integration with

respect to the stationary probability distribution π).

2. If it is a partially observed Markov chain, we can

choose φ(·) that depend only on the observables with

no change in the theory. Thus in principle it is already

applicable to partially observed Markov chains.

3. While by itself it only evaluates a fixed policy, TD(λ)

can serve as a component of two time scale learning

algorithms, such as the actor-critic algorithm.

The reason linear function approximation cannot be ‘le-

gitimately’ plugged directly into fully nonlinear schemes

such as Q-learning is that it is not provably convergent,

in fact counterexamples exist. It is well behaved with

respect to the ∥ · ∥D norm, not the ∥ · ∥∞ norm that dom-

inates the dynamic programming world.

LSPE(0)

The LSPE(λ) is another family of policy evaluation schemes

like TD(λ), parametrized by a parameter λ ≥ 0. It often

gives better convergence at the expense of more compu-

tation. We shall restrict to the easier case of λ = 0 and

follow the same notation as for TD(0).

‘LSPE’ stands for Least Squares Policy Evaluation.

Consider the infinite horizon discounted cost. The idea

is to solve for the linear parametrization V ≈ Φr, with Φ

having full rank, the projected Bellman equation

Φr = Π(k + αPΦr) by minimizing the square error

∥Φr −Π(k + αPΦr)∥2D.

Minimizing this in an iterative fashion leads to

rn+1 = argmin∥Φr −Π(k + αPΦrn)∥2D
= argmin∥Φr − (k + αPΦrn)∥2D
= B−1(Ârn + b).

Here

B :=
∑
i
π(i)φ(i)φ(i)T = ΦTDΦ,

Â := α
∑
i
π(i)φ(i)

∑
j
p(j|i)φ(j)T = αΦTDPΦ,

b :=
∑
i
π(i)φ(i)k(i) = ΦTDk.

Let A = Â−ΦTDΦ. An incremental version of the above

recursion would be

rn+1 = (1− a(n))rn + a(n)B−1(Ârn + b)

= rn + a(n)B−1(Arn + b).

The variant based on a single run of the Markov chain

then becomes

rn+1 = rn + a(n)B−1
n (Anrn + bn),

where An, Bn, bn are running estimates of A,B, b. given

by

Bn :=
1

n+1

n∑
m=0

φ(Xm)φ(Xm)T ,

An :=
1

n+1

n∑
m=0

φ(Xm)(αφ(Xm+1)− φ(Xm)),

bn :=
1

n+1
φ(Xm)k(Xm).

These are calculated recursively by

Bn = Bn−1 +
1

n
(φ(Xn−1)φ(Xn−1)

T −Bn−1),

An = An−1 +
1

n
(φ(Xn−1)(αφ(Xn)− φ(Xn−1))

T −An−1),

bn = bn−1 +
1

n
(φ(Xn−1)k(Xn−1)− bn−1).

One also sets B0 = δI + φ(X0)φ(X0)
T , instead of just

φ(X0)φ(X0)
T , for some δ > 0, so that B0 and therefore

Bn are invertible for all n ≥ 0. This makes negligible

difference in the long run because of the averaging.

B−1
n can also be calculated recursively by the Sherman-

Morrison formula

(C + uvT)−1 = C−1 −
C−1uvTC−1

1+ vTC−1u

for C ∈ Rd×d, u, v ∈ Rd.

The limiting o.d.e. is

ṙ(t) = B−1(Ar(t) + b).

The equilibrium r∗ of this o.d.e. will satisfy

B−1(Ar∗ + b) = θ

where θ := the zero vector. Using the definitions of

A,B, b, this can be written as

(ΦTDΦ)−1((αΦTDPΦ)r∗ −ΦTDΦr∗ +ΦTDk) = θ.

Left-multiplying by Φ,

αΦ(ΦTDΦ)−1ΦTDPΦr∗ −Φr∗ +Φ(ΦTDΦ)−1ΦTDk = θ,

that is,

Φr∗ = Π(αPΦr∗ + k)

as desired.

It remains to prove that r∗ is indeed an asymptotically

stable equilibrium of this o.d.e.

Since it is an affine o.d.e., it suffices to check that the

eigenvalues of

B−1A = (ΦTDΦ)−1A

= (ΦTDΦ)−1(αΦTDPΦ−ΦTDΦ)

= α(ΦTDΦ)−1ΦTDPΦ− I

are in the left half of the complex plane. Let γ, x denote

an eigenvalue-eigenvector pair of

I +B−1A = α(ΦTDΦ)−1ΦTDPΦ. Then

α(ΦTDΦ)−1ΦTDPΦx = γx.

We shall check that γ is inside the unit open disc in the

complex plane.

This will imply that the eigenvalues of B−1A are in the

left half complex plane. Let M :=
√
DΦ. Then the above

equation becomes

α(MTM)−1MT
√
DPΦx = γx.

Left-multiplying by M ,

αM(MTM)−1MTPΦx = γMx.

Now,

∥γMx∥ = |γ|∥Mx∥ = |γ|
√
x̄TΦTDΦx = |γ|∥Φx∥D,

where x̄ is the complex conjugate of x.

On the other hand,

α∥M(MTM)−1MT
√
DPΦx∥

≤ α∥M(MTM)−1MT∥∥
√
DPΦx∥

≤ α∥Φx∥D.

Here the first inequality uses the fact that M(MTM)−1MT

is a projection and the second inequality uses the fact

that ∥Px∥D ≤ ∥x∥D, which we have seen during our anal-

ysis of TD(0).

It follows that |γ|∥Φx∥D ≤ α∥Φx∥D. Since Φ is full rank

and x ̸= θ, we have |γ| ≤ α < 1.

It follows that all eigenvalues of B−1A are strictly in the

left half of the complex plane. Hence r∗ is the globally

asymptotically stable euilibrium of the o.d.e.

The scaling limit of this o.d.e. is ṙ = B−1Ar, which like-

wise has θ as its globally asymptotically stable equilib-

rium.

This implies that the {rn} remain bounded with probabil-

ity one by the stability test done in class, which, coupled

with the earlier observation, implies that rn → r∗ with

probability one.

Policy gradient methods

We consider here a vanilla version of policy gradient

methods. This is a very important class of RL algo-

rithms and many schemes that have attracted attention

in recent times are rooted in this.

The central idea is to consider a parametrized controller

(e.g., a deep neural network) and do a stochastic gradient

descent over the parameter. The key step then is to get

an expression for this gradient.

We analyze this in the context of average cost. Consider

the parametrized Poisson equation with parameter θ ∈

Rℓ, given by

Vθ(i) = kθ(i)− βθ +
∑
j
pθ(j|i)Vθ(j), i ∈ S. (26)

Here the transition probabilities and the running cost de-

pend on a parametrized control parammetrized by θ, i.e.,

pθ(j|i) =
∑
u
p(j|i, u)qθ(u|i), kθ(i) =

∑
u
qθ(u|i)k(i, u), (27)

where we have considered a parametrized family qθ of

stationary randomized policies.

This explicit representation, however, is not necessary for

deriving the expression for ∇θβθ. (Recall that βθ is the

average cost under θ.) The main point here is that the

θ-dependence comes through the transition probabilities

and the running cost function, through their dependence

on a parametrized control.

Let πθ := the unique stationary distribution under θ, as-

suming irreducibility. Differentiating both sides of (26),

∇θVθ(i) = ∇θkθ(i)−∇θβθ+
∑
j
∇θpθ(j|i)Vθ(j)+

∑
j
pθ(j|i)∇θVθ(j).

Multiplying both sides by πθ(i), summing over i, and

using the facts that

πθ(i) =
∑
j
πθ(j)pθ(i|j) and ∇θ log qθ(u|i) =

∇θqθ(u|i)
qθ(u|i)

∀i, u,

the terms involving ∇θVθ(·) cancel out and we have

∇θβθ =
∑
i
πθ(i)∇θkθ(i) +

∑
i
πθ(i)

∑
j
∇θpθ(j|i)Vθ(j)

=
∑
i
πθ(i)∇θkθ(i) +

∑
i
πθ(i)

∑
j

∑
u
∇θqθ(u|i)p(j|i, u)Vθ(j)

=
∑
i
πθ(i)∇θkθ(i) +∑

i
πθ(i)

∑
j

∑
u
qθ(u|i)p(j|i, u)∇θ log(qθ(u|i))Vθ(j).

Consider the controlled Markov chain (Xn, Zn), n ≥ 0,

with Zn ≈ qθ(·|Xn). Then a stochastic gradient descent

scheme for minimizing βθ is given by

θ(n+1) = θ(n)− a(n)[∇θkθ(Xn) +

∇θ(log qθ(Zn|Xn))Vθ(Xn+1)]θ=θ(n) (28)

where {a(n)} satisfy the usual conditions.

Using the theory of ‘stochastic approximation with Markov

noise’, we see that the iteration will track the o.d.e.

θ̇(t) = −∇θβθ(t), (29)

as desired. Of course, (28) presupposes that Vθ(n)(·)

is available. This can be computed concurrently on a

faster time scale by a stochastic approximation version

of policy evaluation as in actor-critic algorithms, or, writ-

ing Vθ(i) = minaQθ(i, a), by Q-learning on a faster time

scale, etc.

Bellman error methods

Here the idea is to approximate the value function V (·) by

a function F (·; θ) from a family of functions parametrized

by θ. We first consider the policy evaluation case. The

‘Bellman error’ then is

E(θ) :=
1

2
∥F (·; θ)− (k + αPF (·; θ))∥2D.

Then the objective is to minimize this over θ. Note that

the Bellman error is zero for the value function.

The gradient of E(·) is

∇E(θ) =
∑
i
π(i)(k(i) + α

∑
j
p(j|i)F (j; θ)− F (i; θ))

×(α
∑
j
p(j|i)∇F (j; θ)−∇F (i; θ)).

The stochastic gradient descent then becomes

θn+1 = θn − a(n)(k(Xn) + αF (Xn+1; θn)− F (Xn; θn))

×(α∇F (X̃n+1; θn)−∇F (Xn; θn)).

Here X̃n+1 is a simulated random variable according to

p(·|i), conditionally independent of Xn+1 and all random

variables realized toll n, given Xn = i.

This is the ‘double sampling’ idea due to Baird. It leads

to the correct gradient dynamics of the limiting o.d.e.

Using Xn+1 in place of X̃n+1 leads to a conditional ex-

pectation of products in place of a product of conditional

expectations, which is wrong. However, this does not

matter for deterinistic dynamics.

As with all SGD, this ensures a.s. convergence to a local

minimum. In practice, double sampling may be awkward

in some simulation environments.

This algorithm can be considered as a special case of a

family of algorithms

θn+1 = θn − a(n)I{Xn = i}(k(i) + αF (Xn+1; θn)− F (i; θn))

×(λα∇F (X̃n+1; θn)−∇F (Xn; θn)),

where λ > 0 is a tunable parameter. λ = 0 with linear

function approximation leads to TD(0).

Going beyond policy evaluation, one can also use this

formalism for optimization. Combining with Q-learning,

let Q(i, u; θ) denote the parametrized Q-value.

The algorithm then is

θn+1 = θn − a(n)(k(Xn, Zn) + αmax
v

Q(Xn+1, v; θn)

− Q(Xn, Zn; θn))×

(λα∇Q(X̃n+1, Z
′
n; θn)−∇F (Xn, Zn; θn)),

where we use Z′
n ∈ Argmax (Q(Xn+1, ·; θn)) by Danskin’s

theorem. This can be analyzed using nonsmooth

analysis.

For λ = 1, this is a proper gradient-like scheme. For

λ = 0 with the parametrized family given by a deep neu-

ral network, this is known as Deep Q-Network (DQN)

reinforcement learning. In this, we can view the Bellman

error (for a stationary randomized policy φ(·|i), i ∈ S) as

Ē(θ, θ′) :=
1

2

∑
i
π(i)φ(u|i)×

(Q(i, u; θ)− (k(i, u) + αp(j|i, u)max
v

Q(j, v; θ′))2.

The partial gradient w.r.t. θ is

∇θĒ(θ, θ′) = −
∑
i
π(i)φ(u|i)(k(i) + α

∑
j
p(j|i)max

v
Q(j, v; θ′)

− Q(i, u; θ))∇θQ(i, u; θ)).

The DQN algorithm is

θn+1 = θn + a(n)(k(Xn, Zn) + αmax
v

Q(Xn+1, v; θ
′
n)

− Q(Xn, Zn; θn))∇Q(Xn, Zn; θn)),

Here θ′n is the ‘target’. It is updated periodically and set

equal to θn.

Another version which replaces ∇θmaxvQ(Xn+1, v; θ
′
n) by

∇θQ(Xn+1, v; θ
′
n)|v∈Argmax(Q(Xn+1,·;θn)) instead of

∇θQ(Xn+1, v; θ
′
n)|v∈Argmax(Q(Xn+1,·;θ′n)) is called double DQN

and has better performance.

Both schemes do not have theoretical guarantees and

can fail.

Experience replay: Here the right hand side of DQN

scheme is averaged over a randomly selected batch of

past triplets (Xm, Zm, Xm+1),m ≤ n, at time n. Thus

it can be implemented with a single run of a simulation

with a buffer. Some advantages are:

1. It reduces variance.

2. It helps reduce effect of anomalous transitions.

3. It avoids the problems caused by overfitting to current

data.

4. Re-use of data leads to data efficiency.

5. It is better suited for delayed rewards.

6. In case of Bellman error: If the averaging is done for

only one of the product terms and over triplets

(Xm, Zm, Xm+1),m ≤ n, for which Xm = Xn, Zm = Zn,

then we get the same effect as double sampling.

Zap Q-learning (Devraj, Meyn, et al)

Combines aspects of TD(λ)/DQN and LSPE(λ). Let

{a(n)}, {b(n)} satisfy the Robbins-Monro conditions with

b(n) = o(a(n)) and A0 = a nonsimgular matrix.

vn(i) := argmin(Q(i, ·; θn)),

θn+1 = θn − b(n)A−1
n+1ζn(k(Xn, Zn) + αQ(Xn+1, vn(Xn+1))

− Q(Xn, Zn; θn)),

An+1 = An + a(n)(ζn[αϕ(Xn+1, vn(Xn+1)− ϕ(Xn, Zn)]
T

− An),

ζn+1 = λαζn + ϕ(Xn+1, vn(Xn+1).

